Das Wulffsche Netz

Aus GEOWiki@LMU
Wechseln zu:Navigation, Suche

In der Kristallographie benutzt man das Wulffsche Netz (benannt nach dem Kristallograph George V. Wulff, 1863–1925) zur Beschreibung der Kristallmorphologie, da es winkeltreu ist. Mit dessen Hilfe ist es möglich, den Kristall mit den gemessenen Winkeln als geometrisches Gebilde zu konstruieren. So kann man mit Hilfe der stereographischen Projektion die Winkel, Flächen und Kanten, ebenso wie die Symmetrie übersichtlich darstellen. Die stereografische Projektion mithilfe des winkeltreuen Wulffschen Netzes ermöglicht (Abb. 21), gemäß dem Gesetz der Winkelkonstanz für Kristallflächen, eine verzerrungsfreie Darstellung des Kristalls. So erleichtert die Anwendung eines Gradnetzes den Umgang mit der stereographischen Projektion. Man dreht eine Kugel mit Längen- und Breitenkreisen so, dass die Achse Zenit-Nadir in der Projektionsebene liegt und dann die Längen- und Breitenkreise auf die Projektionsebene projiziert werden. Die Zenit-Nadir-Richtung der stereographischen Projektion steht also senkrecht auf der N‘-S‘-Richtung des Gradnetzglobus bzw. des Wulffschen Netzes (vgl. Abb. 4 und 5)

Wulffnet1.svg

Abbildung 1: Winkeltreues Wulffsches Netz (Joshuardavis, 2020) Die Längenkreise entsprechen hier den Großkreisen, auf welchen die Zonenverbände eingetragen werden können. Die Breitenkreise (Kleinkreise) mit Ausnahme des Äquators sind aber keine Großkreise.

Galenitkristall.jpg

Animation und Abbildung 2: Galenitkristall im Zentrum einer Kugel. Die Flächennormalen des Kristalls schneiden die Kugeloberfläche in Flächenpolen, die auf Großkreisen liegen (nach Vorlage Borchardt-Ott and Sowa, 2018).


StereoProjGradnetz.svg

Abbildung 3: Stereographische Projektion des Gradnetzes eines Globus (N‘-S‘ steht senkrecht zu N-S) erzeugt das Wulffsche Netz. Lage der Winkelkoordinaten φ (Azimut) und ρ (Poldistanz). Der Flächenpol P liegt auf φ = 90°, ρ=30° (nach Vorlage Borchardt-Ott and Sowa, 2018).

In Abbildung 3a) ist das Gradnetz einer Halbkugel berücksichtigt. Hier sind alle Längenkreise und der Äquator der Kugel Großkreise. Sämtliche Breitenkreise außer dem Äquator der Kugel sind Kleinkreise. Daher kann der Winkel zwischen 2 Flächenpolen auf der Kugeloberfläche mithilfe des Wulffschen Netzes direkt in die stereographische Projektion eingetragen werden. Dabei entspricht der zwischen 2 Kristallflächen gemessene Winkel, dem Winkel der beiden Flächennormalen (Flächenpole). So bilden die beiden Normalen die Ebene eines Großkreises (Abb. 3a). Der gemessenen Winkelwert (gemessen zum Beispiel mit dem Goniometer) entspricht dem Kreisbogen des Großkreises zwischen den beiden Flächennormalen. In der stereographischen Projektion dürfen deshalb die Winkel nur auf Großkreisen abgetragen/abgelesen werden (Abb. 3b).

Stereographische Projektion einer tetragonalen Pyramide und Pedion

Für eine Pyramidenfläche sind die Winkelkoordinaten φ und ρ angegeben. So wählt man den Kreis der Ebene der stereographischen Projektion als Azimut φ. Die φ-Werte reichen von 0° - 360°. Demnach hat die nach vorne weisende Fläche der tetragonalen Pyramide einen φ-Wert von 90°. Der ρ-Kreis steht also senkrecht auf dem φ-Kreis. So ergeben sich für die Flächen der tetragonalen Pyramide folgende Winkelkoordinaten: φ = 0°, 90°, 180°, 270° und für alle Flächen den gleichen ρ-Wert.

TetragonalerPyramideundPedion.svg

Abbildung 4: Stereographische Projektion einer tetragonalen Pyramide und Pedion. Für eine Pyramidenfläche sind die Winkelkoordinaten φ und ρ angegeben (nach Vorlage Borchardt-Ott and Sowa, 2018).

Bei Betrachtung einer tetragonalen Dipyramide liegen folgende Werte für die Winkelkoordinaten der 8 Flächen vor: wie oben φ = 0°, 90°, 180°, 270° und ρ und -ρ.

Bei den zur Nordhalbkugel gehörenden Flächen bezieht man sich bei der Poldistanz ρ auf den Nordpol, bei den Flächen der Südhalbkugel auf den Südpol (-ρ); ρ≤ ±90° (Borchardt-Ott and Sowa, 2018).

Gezeichnet wird analog zu dem Schmidt’schen Netz mit Hilfe von Transparenzpapier. Aber im Gegensatz zum Schmidt’schen Netz zeichnet man hier auf der oberen Hälfte der Kugel.

Bei der stereographische Projektion gibt es wichtige Eigenschaften

Zwei Richtungen der stereographischen Projektion auf der Kugel schließen denselben Winkel, wie eben diese Richtungen auf der Kugel ein. Sie ist daher winkeltreu. Die Längen- und Breitenkreise des Globusnetzes stehen zueinander senkrecht. Die Groß- und Kleinkreise des Wulff ’schen Netzes müssen senkrecht aufeinander stehen, da das Wulffsche Netz die Projektion dieser Kreise darstellt (vgl. Abb. 5). Die Kreise auf der Kugel (Groß- und Kleinkreise) werden wieder als Kreise oder Kreisbögen auf die Äquatorebene projiziert (vgl. auch Abb. 6). Als Geraden werden die Großkreise abgebildet, die die Zenit-Nadir-Richtung schneiden. Die stereographische Projektion ist somit auch kreistreu (Borchardt-Ott and Sowa, 2018).


KreiseaufderKugeloberflaeche.svg

Abbildung 5: Die stereographische Projektion eines Kreises auf der Kugeloberfläche erzeugt auf der Äquatorebene wieder einen Kreis (nach Vorlage Borchardt-Ott and Sowa, 2018).

Die weitere Eigenschaft, dass die Mittelpunkte der Kreise nicht als Mittelpunkte projiziert werden, kann man mit folgender Überlegung belegen. Man nehme einen Kreis auf der Kugeloberfläche mit einem Radius von 30°, nimmt das Wulffsche Netz und legt einen Pol M fest. Dann konstruiert man den geometrischen Ort für alle die Pole, die von M 30° entfernt sind. Durch Drehung des Transparentpapiers werden auf den Großkreisen von M aus die Winkel von 30° abgetragen. Die so konstruierten Pole kommen alle auf der Peripherie eines Kreises zu liegen. Allerdings ist M nicht der Mittelpunkt dieses Kreises, den Kreismittelpunkt M‘ des Kreises erhält man durch eine Halbierung der Strecke K1K2 (vgl. Abb.6)

Ausschnitt der Äquatorebene.svg

Abbildung 6: Ausschnitt der Äquatorebene einer stereographischen Projektion. Vom Pol M sind Winkel von 30° abgetragen. Die konstruierten Pole liegen auf der Peripherie eines Kreises. Den Mittelpunkt M‘ des Kreises erhält man durch Halbierung der Strecke K1K2 (nach Vorlage Borchardt-Ott and Sowa, 2018).

Zeichnen einer Fläche mit dem Wulffschen Netz

Die folgenden Abbildungen beschreiben, wie man eine Fläche mit dem Wulffschen Netz zeichnet (van Well, 2020): (auf die Pfeile klicken)

Darstellung einer ähnlicher Fläche in 3D


  1. Weiter gehts mit den stereographischen Projektion... Stereographische_Projektionen_(Stereonetze)
  2. Weiter gehts mit dem Schmidtschen Netz... Schmidtsche_Netz
  3. Weiter gehts mit dem Wulffschen Netz... Das_Wulffsche_Netz

Weiterführende Literatur

Borchardt-Ott, W. and Sowa, H. (2018) Kristallographie - Eine Einführung für Studierende der Naturwissenschaften, Kristallographie
Joshuardavis, W. File:Wulffnet.svg - Wikimedia Commons. Available at: https://commons.wikimedia.org/wiki/File:Wulffnet.svg (Accessed: 17 March 2021).
Well, N. van (2020) Allgemeine Mineralogie. doi: 10.1524/zkri.1956.107.3.240.



Autor:innen

Maxl Autor.svg
Dieser Artikel wurde geschrieben und gegengelesen von:
Wolfgang Stoiber, Donjá Aßbichler
Du möchtest wissen, wer hinter den Autor:innen und Reviewer:innen steckt? Dann schau doch beim GEOWiki-Team vorbei!